BEST A I COMPUTER INSTITUTE IN PUNE
whats app us

Sane's Academy Of Artificial Inteligence

Home About Us Videos Contact Us

Please fill out the below form. Our concerned person will contact you soon.

youtube icon
about-Sane AI about-Sane AI

Data Science Using RData Science with Python

Python Programming

  • Data Types
  • Anaconda Installaon: Jupyter Notebook, Spyder
  • Collections: lists, tuples, sets, diconaries
  • Reading and Writing Data: Text files, Excel sheets
  • Control Structures
  • Creating Functions
  • Numpy operations
  • Pandas Operations
    • Sub setting the data
    • Reshaping the Data
  • Graphics Using matplotlib and seaborn
  • Object Oriented Programming in Python
    • Classes and Objects
    • Class Inheritence
  • Data Preprocessing:
    • Imputing Missing Values: Mean, Median, K-NN Imputers
    • Hot Encoding / Dummy
    • Ordinal Encoding

     

    Structured Query Language (SQL)

  • Creating Databases
  • Creating tables, views
  • Connecting the MYSQL database with Python
  •  

    Machine Learning Algorithms

    Libraries covered: scikit-learn, mlxtend, h2o

    Supervised Learning

  • Naïve Bayes Algorithm
  • K-nearest Neigbour Classifiers and Regressors
  • Linear and Logistic Regression
  • Stochastic Gradient Descent Classifier and Regressor
  • Regularized Regression: Lasso, Ridge and Elasc Net
  • Decision Trees (Single Tree): Classifier and Regressor
  • Random Forest Classifier and Regressor
  • Support Vector Machines
  • Linear & Quadratic Discriminant Analysis
  • Neural Networks: MLP Classifier and Regressor
  • Model Ensembling
  • Bagging Classifier and Regressor
  • Boosting Classifier and Regressor
  • Stacking Classifier and Regressor
  • Using h2o Technology:
    • H2o Flow
    • Applying different models in h2o
    •  

      Unsupervised Learning

    • Cluster Analysis
    • Hierarchical Clustering
    • K-means Clustering
    • Association Rules Mining (mlxtend library)
    • Principal Components Analysis
    •  

      Time Series Analysis (statsmodels & sktime libraries)

    • Moving Average
    • Simple Exponential Smoothening
    • Holt-Winter's Method
    • ARIMA Models
    •  

  • Machine Learning Applications

  • Recommendation Systems (Library: scikit-surprise)
    • K-NN
    • SVD
    • Natural Language Processing (Libraries: scikit-learn, genism)

      • Term Document Matrix
      • Count and TF-IDF Vectorizaon
      • Word Cloud
      • Word embedding
      • Introducon to Prompt Engineering

       

      Deep Learning Algorithms

    • Deep Learning Basics
    • Introducon to TensorFlow
    • Introducon to Keras & PyTorch
    • Mullayer Perceptron using Keras
    • Saving and Loading a Model in Keras
    • Early Stopping for Prevenng Overfing
    • Dropout
    • Problems of Exploding and Vanishing gradients
    • Training Methods for Neural Network (High-Level Overviews only)
    • Classic Backpropagaon o Momentum Backpropagation
    • Update of weights with single training set element, Batch Training, Mini-batch Training, Stochastic Gradient Descent o ADAM
    • L1 and L2 Regularizaon
    • Convolutional Neural Network
      • Convolutional Concept
      • Inception Network
      • Transfer Learning
      • Data Augmentaon
      • Recurrent Neural Network (RNN)
        • RNN Concept
        • Types of RNNs
        • Long Short-Term Memory (LSTM) - (High-Level Overview only)
        •  

          Machine Learning options in Cloud Computing with AWS SageMager

        • AWS Accounts Set-up
        • Billing, Billing Alerts
        • Configuring IAM Users
        • Seting up Notebook instance
        • Using built-in Machine Learning algorithms in SageMaker
          • XGBoost
          • PCA
          •  

            Visualization with Power BI

          • Creating basic charts
          • Dashboards
          •